3-hydroxypropionyl-coenzyme A dehydratase and acryloyl-coenzyme A reductase, enzymes of the autotrophic 3-hydroxypropionate/4-hydroxybutyrate cycle in the Sulfolobales.

نویسندگان

  • Robin Teufel
  • Johannes W Kung
  • Daniel Kockelkorn
  • Birgit E Alber
  • Georg Fuchs
چکیده

A 3-hydroxypropionate/4-hydroxybutyrate cycle operates in autotrophic CO(2) fixation in various Crenarchaea, as studied in some detail in Metallosphaera sedula. This cycle and the autotrophic 3-hydroxypropionate cycle in Chloroflexus aurantiacus have in common the conversion of acetyl-coenzyme A (CoA) and two bicarbonates via 3-hydroxypropionate to succinyl-CoA. Both cycles require the reductive conversion of 3-hydroxypropionate to propionyl-CoA. In M. sedula the reaction sequence is catalyzed by three enzymes. The first enzyme, 3-hydroxypropionyl-CoA synthetase, catalyzes the CoA- and MgATP-dependent formation of 3-hydroxypropionyl-CoA. The next two enzymes were purified from M. sedula or Sulfolobus tokodaii and studied. 3-Hydroxypropionyl-CoA dehydratase, a member of the enoyl-CoA hydratase family, eliminates water from 3-hydroxypropionyl-CoA to form acryloyl-CoA. Acryloyl-CoA reductase, a member of the zinc-containing alcohol dehydrogenase family, reduces acryloyl-CoA with NADPH to propionyl-CoA. Genes highly similar to the Metallosphaera CoA synthetase, dehydratase, and reductase genes were found in autotrophic members of the Sulfolobales. The encoded enzymes are only distantly related to the respective three enzyme domains of propionyl-CoA synthase from C. aurantiacus, where this trifunctional enzyme catalyzes all three reactions. This indicates that the autotrophic carbon fixation cycles in Chloroflexus and in the Sulfolobales evolved independently and that different genes/enzymes have been recruited in the two lineages that catalyze the same kinds of reactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Malonic semialdehyde reductase, succinic semialdehyde reductase, and succinyl-coenzyme A reductase from Metallosphaera sedula: enzymes of the autotrophic 3-hydroxypropionate/4-hydroxybutyrate cycle in Sulfolobales.

A 3-hydroxypropionate/4-hydroxybutyrate cycle operates during autotrophic CO(2) fixation in various members of the Crenarchaea. In this cycle, as determined using Metallosphaera sedula, malonyl-coenzyme A (malonyl-CoA) and succinyl-CoA are reductively converted via their semialdehydes to the corresponding alcohols 3-hydroxypropionate and 4-hydroxybutyrate. Here three missing oxidoreductases of ...

متن کامل

Identification of missing genes and enzymes for autotrophic carbon fixation in crenarchaeota.

Two autotrophic carbon fixation cycles have been identified in Crenarchaeota. The dicarboxylate/4-hydroxybutyrate cycle functions in anaerobic or microaerobic autotrophic members of the Thermoproteales and Desulfurococcales. The 3-hydroxypropionate/4-hydroxybutyrate cycle occurs in aerobic autotrophic Sulfolobales; a similar cycle may operate in autotrophic aerobic marine Crenarchaeota. Both cy...

متن کامل

A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea.

The assimilation of carbon dioxide (CO2) into organic material is quantitatively the most important biosynthetic process. We discovered that an autotrophic member of the archaeal order Sulfolobales, Metallosphaera sedula, fixed CO2 with acetyl-coenzyme A (acetyl-CoA)/propionyl-CoA carboxylase as the key carboxylating enzyme. In this system, one acetyl-CoA and two bicarbonate molecules were redu...

متن کامل

Labeling and enzyme studies of the central carbon metabolism in Metallosphaera sedula.

Metallosphaera sedula (Sulfolobales, Crenarchaeota) uses the 3-hydroxypropionate/4-hydroxybutyrate cycle for autotrophic carbon fixation. In this pathway, acetyl-coenzyme A (CoA) and succinyl-CoA are the only intermediates that can be considered common to the central carbon metabolism. We addressed the question of which intermediate of the cycle most biosynthetic routes branch off. We labeled a...

متن کامل

Malonyl-coenzyme A reductase in the modified 3-hydroxypropionate cycle for autotrophic carbon fixation in archaeal Metallosphaera and Sulfolobus spp.

Autotrophic members of the Sulfolobales (Crenarchaeota) contain acetyl-coenzyme A (CoA)/propionyl-CoA carboxylase as the CO2 fixation enzyme and use a modified 3-hydroxypropionate cycle to assimilate CO2 into cell material. In this central metabolic pathway malonyl-CoA, the product of acetyl-CoA carboxylation, is further reduced to 3-hydroxypropionate. Extracts of Metallosphaera sedula containe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 191 14  شماره 

صفحات  -

تاریخ انتشار 2009